Ectopically expressed Slc34a2a sense-antisense transcripts cause a cerebellar phenotype in zebrafish embryos depending on RNA complementarity and Dicer
نویسندگان
چکیده
Natural antisense transcripts (NATs) are complementary to protein coding genes and potentially regulate their expression. Despite widespread occurrence of NATs in the genomes of higher eukaryotes, their biological role and mechanism of action is poorly understood. Zebrafish embryos offer a unique model system to study sense-antisense transcript interplay at whole organism level. Here, we investigate putative antisense transcript-mediated mechanisms by ectopically co-expressing the complementary transcripts during early zebrafish development. In zebrafish the gene Slc34a2a (Na-phosphate transporter) is bi-directionally transcribed, the NAT predominantly during early development up to 48 hours after fertilization. Declining levels of the NAT, Slc34a2a(as), coincide with an increase of the sense transcript. At that time, sense and antisense transcripts co-localize in the endoderm at near equal amounts. Ectopic expression of the sense transcript during embryogenesis leads to specific failure to develop a cerebellum. The defect is RNA-mediated and dependent on sense-antisense complementarity. Overexpression of a Slc34a2a paralogue (Slc34a2b) or the NAT itself had no phenotypic consequences. Knockdown of Dicer rescued the brain defect suggesting that RNA interference is required to mediate the phenotype. Our results corroborate previous reports of Slc34a2a-related endo-siRNAs in two days old zebrafish embryos and emphasize the importance of coordinated expression of sense-antisense transcripts. Our findings suggest that RNAi is involved in gene regulation by certain natural antisense RNAs.
منابع مشابه
Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs.
Overlapping sense/antisense RNAs transcribed in opposite directions from the same genomic locus are common in vertebrates. The impact of antisense transcription on gene regulation and cell biology is largely unknown. We show that sense/antisense RNAs of an evolutionarily conserved phosphate transporter gene (Slc34a2a) are coexpressed in a short time window during embryonic development of zebraf...
متن کاملRNAi-Mediated Gene silencing in Zebrafish Triggered by Convergent Transcription
RNAi based strategies to induce gene silencing are commonly employed in numerous model organisms but have not been extensively used in zebrafish. We found that introduction of transgenes containing convergent transcription units in zebrafish embryos induced stable transcriptional gene silencing (TGS) in cis and trans for reporter (mCherry) and endogenous (One-Eyed Pinhead (OEP) and miR-27a/b) g...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملDissection of a natural RNA silencing process in the Drosophila melanogaster germ line.
To date, few natural cases of RNA-silencing-mediated regulation have been described. Here, we analyzed repression of testis-expressed Stellate genes by the homologous Suppressors of Stellate [Su(Ste)] repeats that produce sense and antisense short RNAs. The Stellate promoter is dispensable for suppression, but local disturbance of complementarity between the Stellate transcript and the Su(Ste) ...
متن کاملRetraction: RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferenti...
متن کامل